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Carrier Generation and Recombination E PF L

Key questions

How are these principles applied to optoelectronic devices?



What does the band gap represent E PFL

Band Gap [eV]
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Lattice Constant [A]

@ -1v O m-v O 1M-VI
How to convert eV into wavelength?

Calculate the wavelength of a photon with energy 3.1 eV.

E=h =h—c, Sol=hc=1240eV°nm= 400 nm |.
A E 3.1eV




Optoelectronic devices

1. Most llI-V compounds radiate at wavelengths above
the visible region, i.e. in the infrared. However, adding
some Al to GaAs producing AlxGal-xAs, will shift the
wavelength into the red region of the spectrum - here
are our red luminescence diodes and Lasers!

2. Very fortunate: GaAs and AlAs have almost the same
lattice constant; we can thus make any combinations
of these materials without encountering mechanical
stress. .

Band Gap [eV]

3. Very unfortunate: For a long time, there were no IlI-V — : :
compounds in the diagram that emit blue light - this ﬂ,ﬂ
is a severe problem for many potential applications. GaAs LI N [P | | CdSe
While SiC could be used to some extent, it was only 10 c 2
with the recent advent of InGaN that this problem 05 Lr si | Q@
was solved. SiC and GaN crystals, however, are not of Ta0 32 26 51 52 ss ' 6.0 62
the "zinc-blende" type common t.o all the III-Ys in the Lattice Constant [A]
diagram but have a hexagonal unit cell: wurtzite. They
therefore do not easily mix with the others! ¢ Vv

O Imr-v < I-VI

4. If we want to radiate at 1.3 um or 1.5 um - infrared wavelength of prime importance for optical communications - we should work with
combinations of InAs, GaAs, and AlSb.

5. Most interesting: The II-VI compounds are all direct semiconductors and span a much larger range of wavelengths than the IlI-V's. The
fact that they are not much used for products tells us that there must be big problems!

6. Before the 90’s, most research was on II-VI compounds: ZnSe, ZnTe and ZnS (compatible with GaAs)
7. But they suffered from severe stability problems, short lifetime, degradation due to the propagation of defects

8. GaN has a much stronger covalent bond: much more stable!



Light emitting diodes
A simplified picture
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(b) Homojunction under forward bias
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Light emitting diodes

A simplified picture
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Light emitting diodes =PrL

Improving the efficiency in emitting photons:

internal quantum efficiency (IQE): ratio of emitted photons per electron-hole recombinations
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Quantum wells:

* materials with smaller band gap

* Increase the interaction between electrons and holes: more recombinations
* Photons are emitted with the energy of the smaller band-gap material



Light emitting diodes =PrL

Quantum wells:
* In GaN system, quantum wells are typically made out of InGaN
 The In content determines the energy of the photons (color of the light)
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Light emitting diodes

Simplified case of InGaN/GaN quantum well

Light emission to air
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Temperature dependence of band-gap: E PFL

How should light emission in LEDs be affected at low temperature?

1.6

1.5

1.4
— E[(0) a 1]
s 13 (eV) (eV/K) (K)
o GaAs 1.519 5.4x10-* 204
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=
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At high temperatures, the interatomic spacing increases when the amplitude of the atomic vibrations increases due to
the increased thermal energy - the material expands!
Thus the band gap lowers at high temperature and increases at low temperatures 11



Temperature dependence of band-gap: E PF L

How should light emission in LEDs be affected at low temperature?

Light, the visible spectrum

violet indigo blue green yellow orange red
[ [ | [ | | | |
frequency g 675 630 590 525 510 460 380
(THz")
wavelength 400 445 475 510 570 590 650 780
(nm**) I | | | | | | J
photon 3.1 2.8 2.6 2.4 22 2.1 1.9 1.6
energy L | | | | | | J
(V=) * In terahertz (THz); 1 THz = 1x102 cycles per second.
** In nanometres (nm); 1nm = 1x1079 metre.
© 2012 Encyclopaedia Britannica, Inc. ** In electron volts (eV).
What happens for red LEDs? https://www.youtube.com/watch?v=dSXGlhrtaml
What happens for blue LEDs? https://www.youtube.com/watch?v=891ybm5zsy0

12


https://www.youtube.com/watch?v=dSXGlhrtamI
https://www.youtube.com/watch?v=891ybm5zsy0

Current issue in LEDs EPFL

Two examples of current issues in LEDs

1. “Green-gap”: Quantum well efficiency drops significantly at longer wavelengths

High-power (= | Watt input) visible-spectrum LEDs
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Fig. 2. State-of-art external quantum efficiencies for high-power visible-spec-
trum LEDs (7; = 25 °C): (1) InGaN TFFC LEDs, 350 mA (this paper): (2)
InGaN VTF LED, 1000 mA [42]: (3) InGaN CC LEDs employing patterned
substrates [35]: and (4) Production performance, AlGalnP TIP LEDs [9], Philips
Lumileds Lighting Co., 350 mA. 1"( A) is the luminous eye response curve from

CIE. Dashed lines are guides to the eye.
13



Current issue in LEDs

2. Auger recombination: major problem in GaN LEDs today
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The efficiency drops when current density increases:

”Droop problem”

Auger recombination:

. 3-particle process (proportional to np? or pn?)
. energy given to third carrier; needs lots of carriers: shows up at large carrier densities
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How to produce white LED for lighting? E PFL

Phosphors:
particles that convert large energy blue photons in smaller energy photons (RED, GREEN OR YELLOW)
(a) Full conversion |0 (b) Partial conversion [0 o0
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17
J. Cho et al., Laser Photonics Rev. 11, No. 2, 1600147 (2017) To produce Whlte Ilght’ mix the correct rat|0 Of Colors



How to produce white LED for lighting? E PFL
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J. Cho et al., Laser Photonics Rev. 11, No. 2, 1600147 (2017)



Solar cells EPFL

Direct bad gap semiconductors:
GaAs, InP, InGaAs, InGaAsP, GaN, InGaN emit light very efficiently
and indirect bad gap semiconductors: Si, Ge, SiC don’t

Direct gap semiconductor Indirect gap semiconductor
E carrier thermalization
> A
) ”
Ephotm < Eg Egl)" P / "y
transparent v | oy
”
Y ’ ¥
T 4]\
VB 4

k vector

Below band gap: the material is transparent

Above the band gap: material absorbs photons -



Solar cells EPFL

Direct band gap semiconductors:
GaAs, InP, InGaAs, InGaAsP, GaN, InGaN emit light very efficiently
and indirect band gap semiconductors: Si, Ge, SiC don’t

Absorption coefficient of various semiconductors

A —
A In g7Ga 9345 gk’ 036 i
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Wavelength A, [mnn]

Absorption at the edge of the band gap is not sharp for indirect band gap materials

So why are most solar cells made out of silicon? 21



Solar cells EPFL

Built-in Photon
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Solar cells

Sunlight 35 |

Solar Panel

. 3
Antireflection coating 6 2.5 -

Transparent adhesive

Cover glass 7 CUrrent s
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\ The short circuit current, lgg,
is the maximum current from a
solar cell and occurs when the
voltage across the device is
Zero.

Current

Power from
the solar cell

p-n junction

p-type semiconductor

@ = olociron e Current

Voltage
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Increasing the solar intensity:
linear increase in short-circuit current (lsc), but sub-linear increase in open-circuit voltage (Vo)

23
Thus the need for maximum power point tracking (MPPT) to extract the maximum power of the the PV



Solar cells
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Multijunction solar cells
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Solar cells
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