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Outline of the lecture

• Dynamics of carrier generation
• Optoelectronics devices
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Carrier Generation and Recombination

Key questions

How are these principles applied to optoelectronic devices?
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How to convert eV into wavelength?

What does the band gap represent
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4. If we want to radiate at 1.3 µm or 1.5 µm - infrared wavelength of prime importance for optical communications - we should work with
combinations of InAs, GaAs, and AlSb.

5. Most interesting: The II-VI compounds are all direct semiconductors and span a much larger range of wavelengths than the III-V's. The
fact that they are not much used for products tells us that there must be big problems!

6. Before the 90’s, most research was on II-VI compounds: ZnSe, ZnTe and ZnS (compatible with GaAs)

7. But they suffered from severe stability problems, short lifetime, degradation due to the propagation of defects

8. GaN has a much stronger covalent bond: much more stable!

Optoelectronic devices

1. Most III-V compounds radiate at wavelengths above
the visible region, i.e. in the infrared. However, adding
some Al to GaAs producing AlxGa1-xAs, will shift the
wavelength into the red region of the spectrum - here
are our red luminescence diodes and Lasers!

2. Very fortunate: GaAs and AlAs have almost the same
lattice constant; we can thus make any combinations
of these materials without encountering mechanical
stress.

3. Very unfortunate: For a long time, there were no III-V
compounds in the diagram that emit blue light - this
is a severe problem for many potential applications.
While SiC could be used to some extent, it was only
with the recent advent of InGaN that this problem
was solved. SiC and GaN crystals, however, are not of
the "zinc-blende" type common to all the III-Vs in the
diagram but have a hexagonal unit cell: wurtzite. They
therefore do not easily mix with the others!



Light emitting diodes

A simplified picture
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Light emitting diodes

A simplified picture
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Quantum wells: 
• materials with smaller band gap
• Increase the interaction between electrons and holes: more recombinations
• Photons are emitted with the energy of the smaller band-gap material

Light emitting diodes

Improving the efficiency in emitting photons:

internal quantum efficiency (IQE): ratio of emitted photons per electron-hole recombinations
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Quantum wells: 
• In GaN system, quantum wells are typically made out of InGaN
• The In content determines the energy of the photons (color of the light)

Light emitting diodes

Bandgap energy versus In composition for InGaN ternary within visible spectrum energy range8



Light emitting diodes

Simplified case of InGaN/GaN quantum well

substrate

n-GaN

p-GaN

InGaN
quantum well

Light emission to air

GaN

GaN
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Temperature dependence of band-gap: 

How should light emission in LEDs be affected at low temperature?
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At high temperatures, the interatomic spacing increases when the amplitude of the atomic vibrations increases due to
the increased thermal energy - the material expands!

Thus the band gap lowers at high temperature and increases at low temperatures
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Temperature dependence of band-gap: 

How should light emission in LEDs be affected at low temperature?

https://www.youtube.com/watch?v=dSXGlhrtamI

https://www.youtube.com/watch?v=891ybm5zsy0What happens for blue LEDs?
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What happens for red LEDs?

https://www.youtube.com/watch?v=dSXGlhrtamI
https://www.youtube.com/watch?v=891ybm5zsy0


Current issue in LEDs

1. “Green-gap”: Quantum well efficiency drops significantly at longer wavelengths 
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Two examples of current issues in LEDs
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2. Auger recombination: major problem in GaN LEDs today

Phonon-assisted Auger recombination:

Auger recombination: 
• 3-particle process (proportional to np2 or pn2)
• energy given to third carrier; needs lots of carriers: shows up at large carrier densities 

Current issue in LEDs

The efficiency drops when current density increases:
”Droop problem”

14
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How to produce white LED for lighting?

To produce white light, mix the correct ratio of colors

(c) Partial conversion

Phosphor emitting 
yellow (Y)

Y

Blue excitation 
source

Phosphors: 
particles that convert large energy blue photons in smaller energy photons (RED, GREEN OR YELLOW)

J. Cho et al., Laser Photonics Rev. 11, No. 2, 1600147 (2017) 
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J. Cho et al., Laser Photonics Rev. 11, No. 2, 1600147 (2017) 

How to produce white LED for lighting?



Direct bad gap semiconductors:
GaAs, InP, InGaAs, InGaAsP, GaN, InGaN emit light very efficiently

and indirect bad gap semiconductors: Si, Ge, SiC don’t

Solar cells

Below band gap: the material is transparent
Above the band gap: material absorbs photons

Ephoton < Eg
transparent
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Direct band gap semiconductors:
GaAs, InP, InGaAs, InGaAsP, GaN, InGaN emit light very efficiently

and indirect band gap semiconductors: Si, Ge, SiC don’t

Solar cells

Absorption coefficient of various semiconductors

So why are most solar cells made out of silicon?

Beer-Lambert law

𝐼 = 𝐼!𝑒"#$

Absorption at the edge of the band gap is not sharp for indirect band gap materials
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Solar cells
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Solar cells

Increasing the solar intensity: 
linear increase in short-circuit current (ISC), but sub-linear increase in open-circuit voltage (VOC)

Thus the need for maximum power point tracking (MPPT) to extract the maximum power of the the PV
23



Solar cells

Multijunction solar cells



Solar cells
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III-V Multijunction Cells 

(2-terminal, monolithic)
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https://www.nrel.gov/pv/cell-efficiency.html


